Modeling thermodynamic trends of rotating detonation engines
نویسندگان
چکیده
منابع مشابه
Toroidal Imploding Detonation Wave Initiator for Pulse Detonation Engines
Imploding toroidal detonation waves were used to initiate detonations in propane–air and ethylene–air mixtures inside of a tube. The imploding wave was generated by an initiator consisting of an array of channels filled with acetylene–oxygen gas and ignited with a single spark. The initiator was designed as a low-drag initiator tube for use with pulse detonation engines. To detonate hydrocarbon...
متن کاملMultidisciplinary Study of Pulse Detonation Engines
Research at the Explosion Dynamics Laboratories at Caltech over the past three years under an ONR contract has examined many issues critical to Pulse Detonation Engine (PDE) development. These include: fundamental and applied studies of detonation initiation; detonation cell width measurements to characterize fuels, including JP10; visualization of the reaction zone structure of propagating det...
متن کاملPulse Detonation Engines: Initiation, Propagation, and Performance
Research carried out from 2003-2005 at the Explosion Dynamics Laboratories at Caltech under an ONR contract has examined many issues critical to Pulse Detonation Engine (PDE) development. These include: detonation structure imaging using OH PLIF; a narrow channel facility for examining regular and irregular detonations; detonation diffraction; mechanism of soot track generation; fundamental and...
متن کاملAirbreathing rotating detonation wave engine cycle analysis
Airbreathing rotating detonation wave engine cycle analysis" a r t i c l e i n f o a b s t r a c t A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expan...
متن کاملAIAA 2003-1171 Reactive Flow Phenomena in Pulse Detonation Engines
This paper describes oneand two-dimensional numerical simulations, with simplified as well as full reaction kinetics, of a single cycle pulse detonation engine (PDE). Focus of the present studies is on 1) the presence of a nozzle extension at the end of the tube, and its effect on performance parameters as well as noise characteristics, 2) critical “spark ignition” energies associated with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2020
ISSN: 1070-6631,1089-7666
DOI: 10.1063/5.0023972